
A First Look at Developers’ Live Chat on Gitter

Lin Shi
shilin@iscas.ac.cn

Institute of Software Chinese
Academy of Sciences, University of
Chinese Academy of Sciences, China

Xiao Chen
chenxiao2021@iscas.ac.cn

Institute of Software Chinese
Academy of Sciences, University of
Chinese Academy of Sciences, China

Ye Yang
yyang4@stevens.edu

School of Systems and Enterprises,
Stevens Institute of Technology

Hoboken, NJ, USA

Hanzhi Jiang
Ziyou Jiang

{hanzhi2021,ziyou2019}@iscas.ac.cn
Institute of Software Chinese

Academy of Sciences, University of
Chinese Academy of Sciences, China

Nan Niu
nan.niu@uc.edu

Department of EECS, University of
Cincinnati, Cincinnati, OH

USA

Qing Wang∗

wq@iscas.ac.cn
State Key Laboratory of Computer

Science, Institute of Software Chinese
Academy of Sciences, University of
Chinese Academy of Sciences, China

ABSTRACT

Modern communication platforms such as Gitter and Slack play an

increasingly critical role in supporting software teamwork, espe-

cially in open source development. Conversations on such platforms

often contain intensive, valuable information that may be used for

better understanding OSS developer communication and collabora-

tion. However, little work has been done in this regard. To bridge

the gap, this paper reports a first comprehensive empirical study

on developers’ live chat, investigating when they interact, what

community structures look like, which topics are discussed, and

how they interact. We manually analyze 749 dialogs in the first

phase, followed by an automated analysis of over 173K dialogs in

the second phase. We find that developers tend to converse more of-

ten on weekdays, especially on Wednesdays and Thursdays (UTC),

that there are three common community structures observed, that

developers tend to discuss topics such as API usages and errors, and

that six dialog interaction patterns are identified in the live chat

communities. Based on the findings, we provide recommendations

for individual developers and OSS communities, highlight desired

features for platform vendors, and shed light on future research

directions. We believe that the findings and insights will enable a

better understanding of developers’ live chat, pave the way for other

researchers, as well as a better utilization and mining of knowledge

embedded in the massive chat history.

CCS CONCEPTS

· Software and its engineering→ Open source model; · Gen-

eral and reference→ Empirical studies.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468562

KEYWORDS

Live chat, Team communication, Open source, Empirical Study

ACM Reference Format:

Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing

Wang. 2021. A First Look at Developers’ Live Chat on Gitter. In Proceed-

ings of the 29th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’21), Au-

gust 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3468264.3468562

1 INTRODUCTION

More than ever, online communication platforms, such as Gitter,

Slack, Microsoft Teams, Google Hangout, and Freenode, play a

fundamental role in team communications and collaboration. As

one type of synchronous textual communication among a commu-

nity of developers, live chat allows developers to receive real-time

responses from others, replacing asynchronous communication

like emails in some cases [40, 58, 59]. This is especially true for

open source projects that are contributed by globally distributed

developers, as well as for many companies allowing developers to

work from home due to the COVID-19 pandemic. Conversations

from online communication platforms contain rich information for

studying developer behaviors. Figure 1 exemplifies a slice of live

chat log from the Deeplearning4j Gitter community. Each utterance

consists of a timestamp, developer ID, and a textual message. In

addition, two dialogs are embedded in the chat log. The first one

is reporting an issue about ‘earlystop’, and the second one is ask-

ing for documentation support. Thus, valuable information, such

Dialog1 is 
reporting 
‘earlystop’ 
issue

Developer ID Textual messageTimestamp

Dialog2  is 
asking for 
example/doc

Figure 1: A slice of live chat log from the DL4J community.

391

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468562
https://doi.org/10.1145/3468264.3468562
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3468264.3468562&domain=pdf&date_stamp=2021-08-18


ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Lin Shi , Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang

as when OSS developers interact, what are community structures,

which topics are discussed, and how OSS developers interact, can

be derived from the massive live chat data, which are important for

learning knowledge from productive and effective communication

styles, improving existing live chat platforms, and guiding research

directions on promoting efficient and effective OSS collaboration.

Despite that a few empirical studies started to advocate the use-

fulness of the conversations for understanding developer behaviors

[40, 59, 67], little focuses on how and what the developers commu-

nicate in live chat. The most related research is reported by Shihab

et al. [58] on Internet Relay Chat to analyze content, participants,

and styles of communications. However, their subjects are IRC

meeting logs, which are different in many aspects from developer

live chat conversations. Another thread of related work by Parra

et al. [49] and Chatterjee et al. [15] presents two datasets of open

source developer communications in Gitter and Slack respectively,

with the purpose of highlighting that live developer communica-

tions are untapped information resources. This motivates our study

to derive a deeper understanding about the nature of developer

communications in open-source software.

In this paper, we conduct a first comprehensive empirical study

on developers’ live chat on Gitter, investigating four characteristics:

when they interact (communication profile), what community struc-

tures look like (community structure), which topics are discussed

(discussion topic), and how they interact (interaction pattern). To

that end, we first collect a large scale of developer daily chat from

eight popular communities. Then we manually disentangle 749

dialogs, and select the best disentanglement model from four state-

of-the-art models according to their evaluation results on the 749

dialogs. After automatic disentanglement, we perform an empirical

study on live chat aiming to reveal four characteristics: communi-

cation profile, community structure, dialog topic, and interaction

pattern. In total, we studied 173,278 dialogs, 1,402,894 utterances,

contributed by 95,416 users from eight open source communities.

The main results include: (1) Developers are more likely to chat on

workdays than weekends, especially on Wednesday and Thursday

(UTC); (2) Three social patterns are observed in the OSS community

of live chat: Polaris network, Constellation network, and Galaxy

network; (3) The top three topics that developers frequently discuss

in live chat are API usages, errors, and background information;

and (4) Six interaction patterns are identified in live chat includ-

ing exploring solution, clarifying answer, clarifying question, di-

rect/discussed answer, self-answered monologue, and unanswered

monologue. The major contributions of this paper are as follows.

• We conduct a first large scale analysis study on developers’

live chat messages, providing empirically-based quantita-

tive and qualitative results towards better understanding

developer communication profiles, community structures,

discussion topics, and interaction patterns.

• We provide practical insights on productive dialogs for indi-

vidual developers and OSS communities, highlight desired

features for platform vendors, and shed light on future di-

rections for researchers.

• We provide a large-scale dataset1 of live chat to facilitate the

replication of our study and future applications.

1https://github.com/LiveChat2021/LiveChat#5-download

In the remainder of the paper, Section II illustrates the back-

ground. Section III presents the study design. Section IV describes

the results and analysis. Section V is the discussion of results and

threats to validity. Section VI introduces the related work. Section

VII concludes our work.

2 BACKGROUND

This section describes related key concepts and technologies.

2.1 The Gitter Platform

Many OSS communities utilize Gitter [31] or Slack [32] as their

live communication means. In particular, Gitter is currently the

most popular online communication platform [37] since it provides

open access to public chat rooms and free access to historical data

[49]. Considering the popular, open, and free access nature, we

conduct this study based on Gitter2. Communities in Gitter usu-

ally have multiple chatting rooms: one general room and several

specific-topic rooms. Typically, the general room contains most of

the participants. In this study, we only focus on the general rooms.

In total, there are 2,171 communities in Gitter that can be publicly

accessed. The total number of participants of the 2,171 communities

is 733,535 as of Nov. 20, 2020.

Three main concepts about Gitter live chat log are concerned

in the scope of this study, including chat log, utterance, and dia-

log. In Gitter, developer conversations in one chatting room are

recorded in a chat log. As illustrated in Figure 1, a typical live chat

log contains a sequential set of utterances in chronological order.

Each utterance consists of a timestamp, developer id, and a textual

message initiating a question or responding to an earlier message.

A chat log typically contains a large number of utterances, and at

any given time, multiple consecutive utterances might be possibly

responding to different threads of dialog discussions. The interleav-

ing nature of utterances leads to entangled dialogs, as illustrated

with the two colors in Figure 1. The two colors are used to high-

light utterances belonging to two different dialogs, where the links

between two utterances indicate the responding relationship.

2.2 Challenges in Chat Analysis

Different from many other sources of software development re-

lated communication, the information on online communication

platforms are shared in an unstructured, informal, and interleaved

manner. Thus, analyzing live chat is quite challenging due to the

following barriers. (1) Entangled dialogs. Utterances in chat logs

form stream information, with dialogs often entangling such as

a single conversation is interleaved with other dialogs, as shown

in Figure 1. It is difficult to perform any kind of high-level dialog

analysis without dividing utterances into a set of distinct dialogs.

(2) Expensive human effort. Chat logs are typically high-volume

and contain informal dialogs covering a wide range of technical and

complex topics. Analyzing these dialogs requires experienced ana-

lysts to spend a large amount of time so that they can understand

the dialogs thoroughly. Thus, it is very expensive to conduct a com-

prehensive study on developers’ live chat. (3) Noisy data. There

exist noisy utterances such as duplicate and unreadable messages in

2In Slack, communities are controlled by the team administrators, whereas in Gitter,
access to the chat data is public.

392



A First Look at Developers’ Live Chat on Gitter ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

Manually disentangle dialogs

Select 8 studied 
communities

Data 
prepossessing

Randomly sample 
100 utterances per 

community 

Auto-
analysis

Card-
analysis

RQs Property

RQ1 Communication Profile

RQ2 Community Structure 

RQ3 Discussion Topic 

RQ4 Interaction Pattern

Chat logs
(1,402,894 
utterances)

Sampled 
utterances  (800)

All dialogs
(173,278 
dialogs)

Manual dialogs
(749 dialogs)Refer to logs when 

build dialogs

Data Preparation Empirical Analysis

Evaluate and select the best 
disentanglement model

Automated disentangle dialogs

DD model

Figure 2: Overview of research methodology

chat logs that do not provide any valuable information. The noisy

data poses a difficulty to analyze and interpret the communicative

dialogs. Next, we will introduce several existing techniques that

can automatically disentanglement dialogs.

2.3 Dialog Disentanglement (DD)

Four state-of-the-art techniques have been proposed to address

the entangled dialog challenge in the natural language processing

area: (1) BiLSTMmodel [33] predicts whether there exists an edge

between two utterances, where the edge means one utterance is a

response to another. It employs a bidirectional recurrent neural net-

work with 160 context maximum size, 200 neurons with one hidden

layer. The input is a sequence of 512-dimensional word vectors; (2)

BERTmodel [19] predicts the probability of utterance 𝑢𝑖 ’s cluster-

ing label under the context utterances 𝑢≤𝑖 and labels 𝑦<𝑖 . It utilizes

the Masked Language Model and Next Sentence Prediction [19] to

encode the input utterances, with 512 embedding size and 256 hid-

den units; (3) E2E model [41] performs the dialog Session-State

encoder to predict dialog clusters, with 512 embedding size, 256

hidden neurons and 0.05 noise ratio; and (4) FFmodel [39] is a feed-

forward neural network with two layers, 256-dimensional hidden

vectors, and softsign non-linearities. The input is a 77-dimensional

numerical feature extracted from the utterance texts, which in-

cludes TF-IDF, user name, time interval, whether two utterances

contain the same words, etc. In addition, there are four clustering

metrics that are widely used for DD evaluation: Normalized Mutual

Information (NMI) [61], Adjusted Rand Index (ARI) [54], Shen-F

value [56] and F1 score [18].

3 METHODOLOGY AND STUDY DESIGN

This study aims to investigate four research questions:

RQ1 (Communication Profile): Do Gitter communities demon-

strate consistent community communication profiles? This research

question aims at examining common communication profiles across

the eight communities, particularly the frequent time-frames that

the developers are active and the typical time interval of a dialog.

RQ2 (Community Structure): What are the structural charac-

teristics of social networks built from developer live chat data? To

understand community characteristics of live chat networks, we

perform social network analysis on live-chat utterances, in which

each developer is treated as a node, with edges defined as a pair of

developers co-occurring in one or more dialogs.

RQ3 (Dialog Topic):What are the primary topic types frequently

discussed by developers in live chat? This research question is de-

signed to identify discussion topics in developers’ live chat. There

have been studies analyzing discussion topics in open forums [4],

emails [34], and posts in Stack Overflow [9, 35]. It remains unknown

what developers are talking about in live chat. This study aims at

filling the gap and providing a complementary perspective using

live-chat as a new data source.

RQ4 (Interaction Pattern):How do developers typically interact

with each other in live chat? This research question intends to un-

cover underlying interaction patterns which signify how developers

typically interact (e.g., initiate discussion, respond to questions and

social chat.) with one another throughout a dialog life cycle.

3.1 Methodology Overview

The research methodology follows two phases, as illustrated in

Figure 2. First, in the data preparation phase, a large scale of de-

veloper daily chat utterances data are collected from eight active

communities, and the raw chat utterances data are processed and

transformed into associated dialogs using two approaches, i.e., man-

ual screening on a randomly sampled small dataset and automated

analysis employing the identified best DD model on the whole

dataset. Second, in the empirical analysis phase, further analysis

will be designed and conducted on these two datasets in order to

investigate the characteristics and develop a better understanding

of developer live chat data with respect to the research questions.

3.2 Data Preparation

Studied communities. To identify studied communities, we se-

lect the Top-1 most participated communities from eight active

domains, covering front-end framework, mobile, data science, De-

vOps, blockchain platform, collaboration, web app, and program-

ming language. Then, we collect the daily chat utterances from

Table 1: The statistics of the studied Gitter communities

Community Domain

Entire

Population

Sample

Population

P D U P D U

Angular[30]
Frontend

Framework
22,467 79,619 695,183 125 97 778

Appium[25] Mobile 3,979 4,906 29,039 73 87 724

DL4J[27] Data Science 8,310 27,256 252,846 93 100 1,130

Docker[21] DevOps 8,810 3,954 22,367 74 90 1,126

Ethereum[24]
Blockchain

Platform
16,154 17,298 91,028 116 96 516

Gitter[42]
Collabration

Platform
9,260 7,452 34,147 87 86 515

Nodejs[16]
Web Application

Framework
18,118 13,981 81,771 144 98 737

Typescript[17]
Programming

Language
8,318 18,812 196,513 110 95 1,700

Total 95,416 173,278 1,402,894 822 749 7,226

393



ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Lin Shi , Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang

these communities. Gitter provides REST API [28] to get data about

chatting rooms and post utterances. In this study, we use the REST

API to acquire the chat utterances of the eight selected communities,

and the retrieved dataset contains all utterances as of ł2020-11-20ž.

Detailed statistics are shown in Table 1, where P refers to the num-

ber of participants, D refers to the number of dialogs, and U refers

to the number of utterances. The total number of participants for

the eight communities is 95,416, accounting for 13% of the total

population in Gitter. Thus, we consider that the eight communities

are representative of the Gitter platform.

Prepossessing the textual utterances.Wefirst normalize non-

ASCII characters like emojis to standard ASCII strings. Some low-

frequency tokens contribute little to the analysis of live chat, such

as URL, email address, code, HTML tags, and version numbers.

We replace them with specific tokens <URL>, <EMAIL>, <HTML>,

<CODE>, and <ID>. We utilize Spacy [2] to tokenize sentences into

terms and perform lemmatization and lowercasing on terms with

Spacy to alleviate the influence of word morphology.

Manual labeling of dialog disentanglement.We employ a 3-

step manual process to generate a sample dialog dataset for further

analysis. First, we randomly sample 100 utterances from each com-

munity’s live chat log, with the intention to trace corresponding

dialogs associated with each of the 100 utterances. This step leads

to a total of 800 utterances from the entire 1,402,894 utterances of

the eight communities. Next, using each utterance as a seed, we

identify its preceding and successive utterances iteratively so that

we can group related utterances into the same dialog as complete as

possible. Specifically, for each utterance, we determine its context

by examining the consecutive chats in the chat log, and manually

link it to related utterances belonging to the same dialog. Then, the

next step is cleaning. Specifically, we excluded unreadable dialogs:

(1) dialogs that are written in non-English languages; (2) dialogs

that contain too much code or stack traces; (3) Low-quality dialogs

such as dialogs with many typos and grammatical errors; and (4)

Dialogs that involve channel robots. After these steps, we include

additional six thousand utterances which are associated with the

initial 800 utterances. This leads to a total of 7,226 utterances, man-

ually disentangled into 749 dialogs, as summarized in Table 1. Note

that, removing bot-involved dialogs has little impact on our results.

First, the bot-involved dialogs are relatively small in volume. In

our study, only one of the eight projects utilizes bots, and more

specifically, only nine out of 800 sampled dialogs are excluded due

to bot involvement. Second, we observed that the bot-generated

utterances are rather trivial, such as greeting information, links to

general guidelines, and status updates.

To ensure the correctness of the disentanglement results, a la-

beling team was put together, consisting of one senior researcher

and six Ph.D. students. All of them are fluent in English, and have

done either intensive research work with software development or

have been actively contributing to open-source projects. The senior

researcher trained the six Ph.D. candidates on how to disentangle

dialogs and provided consultation during the process. The disen-

tanglement results from the Ph.D. candidates were reviewed by

others. We only accepted and included dialogs to our dataset when

the dialogs received full agreement. When a dialog received differ-

ent disentanglement results, we hosted a discussion with all team

members to decide through voting. The average Cohen’s Kappa

about dialog disentanglement is 0.81.

Automated Dialog Disentanglement. To analyze the dialogs

on a large scale, we experiment with the four state-of-art DD ap-

proaches, as introduced in Section 2.2 (i.e. BiLSTM model, Bert

model, E2E model, and FF model). Specifically, we use the manual

disentanglement sample data from the previous step as ground

truth data, compare and select the best DD model for the purpose

of further analysis in this study. The comparison results from our

experiments show that the FF approach significantly outperforms

the others on disentangling developer live chat by achieving the

highest scores on all the metrics. The average scores of NMI, Shen-F,

F1, and ARI are 0.74, 0.81, 0.47, and 0.57 respectively3. Finally, we

use the best FF model to disentangle all the 1,402,894 utterances in

chat logs. In total, we obtain 173,278 dialogs.

3.3 Empirical Analysis Design

3.3.1 Analysis for RQ1 (Communication Profile). As good commu-

nication habits suggest more productive development practices, we

intend to reveal the temporal communication profiles of develop-

ers, including when the developers are active and how long the

respondent replies to the dialog initiator. First, we collect all the

utterance time of the entire population, and analyze the peak hours

and peak days. Then we calculate the response time lag :

𝑇𝑖𝑚𝑒_𝑙𝑎𝑔 = 𝑇𝑟 −𝑇𝑖 (1)

where𝑇𝑖 is the time that the initiator launched the dialog, and𝑇𝑟 is

the time the first respondent replied. We automatically calculate the

utterance times and response time lags for all the 173,278 dialogs.

3.3.2 Analysis for RQ2 (Community Structure). We aim to visual-

ize the social networks of developers in live chat, and summarize

the common structures. Social network analysis (SNA) describes

relationships among social entities, as well as the structures and

implications of their connections [65]. For studying relationships

among developers in one OSS community, we generate the social

networks according to the following definition:

𝐺 = {𝑉 , 𝐸}

𝑉 = {𝑑1, 𝑑2, ..., 𝑑𝑛}

𝐸 = {< 𝑑 𝑗 , 𝑑𝑘 >}

(2)

where 𝑑𝑖 is a developer in the chatting room, 𝑑 𝑗 is one dialog initia-

tor, and 𝑑𝑘 is a respondent to 𝑑 𝑗 . Specifically, for each disentangled

dialog, we first identify its initiator and all the respondents. The

initiator is the developer who launches the dialog, and the respon-

dents are other developers who participate in the dialog. Then we

add a link between the initiator and each respondent. (Note that,

RQ2 focuses on exploring responding behaviors, i.e., the interac-

tion between initiators and respondents, thus the links/edges are

defined only between these two roles. Additionally, we will explore

the interaction relationship among initiators and all responders in

RQ4, which focuses on discussion behaviors.) Finally, we employ

an unweighted graph when constructing the social networks, for

visualizing the relationship of all the developers in live chat. The

social network could exhibit the connectivity and density of the

3Due to space, experimental details on evaluation existing DD models are provided on
Github: https://tinyurl.com/3dyu5n44

394



A First Look at Developers’ Live Chat on Gitter ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

open-source community. We build the social networks based on all

the 173,278 dialogs by using the automatic graph tool, Gephi [6].

To understand the topology of the eight social networks, we

report the following SNA measures that have been widely used by

previous studies [45, 55]. Note that, we excluded developers who

never received replies (AKA. Haircut) when calculating SNA mea-

sures following previous work [11, 62]. (1) Degree [20] measures

the number of edges. (2)Betweenness [26] measures the frequency

that a developer lies on the shortest path between other developers.

(3) Closeness [7] measures the average farness (inverse distance)

of one developer to all other developers. (4) Diameter [13] is the

largest geodesic distance in the connected network. (5) Clustering

coefficient [66] is a measure of the degree to which developers in

a graph tend to cluster together.

3.3.3 Analysis for RQ3 (Discussion Topic). Our goal is identifying

discussion topics in developers’ live chat. Chatterjee et al. [15] ob-

served that live chats provide similar information as can be found in

Q&A posts on Stack Overflow. To effectively identify and organize

dialog topics, we extend Beyer et.al’s category of question cate-

gories on Stack Overflow [9]. We choose Beyer et.al’s category for

two reasons. First, since developers use both Question and Answer

forums (such as Stack Overflow) and live chat to resolve develop-

ment issues, we consider the categories of Stack Overflow questions

are partially applicable to the dialog topics in live chat. Second,

Beyer et.al’s category harmonizes five taxonomies presented in

previous studies [3, 8, 10, 51, 64] that are already validated and

suitable to the posts of developers’ questions.

Nonetheless, the predefined category is not meant to be compre-

hensive, thus, we employ a hybrid card sort process [22] to manually

determine the topics of dialogs. In a hybrid card sort, the sorting

begins with the predefined Beyer et.al’s category and participants

could create their own as well. The newly-created topic is instantly

updated into the topic set and can be used by other participants

then. The participants are the same team that manually disentangle

dialogs, and the labeling process is similar to manual dialog disen-

tanglement as introduced in Section 3.2. Specifically, the sorting

process is conducted in one round, with a concluding discussion

session to resolve the disagreement in labels based on majority

voting. The average Cohen’s Kappa about dialog topics is 0.86.

3.3.4 Analysis for RQ4 (Interactive Pattern). Live-chat conversa-

tions generally serve the purposes of solution exploration and dis-

cussion stimulation. To uncover underlying patterns that shape

and/or direct more productive conversations, we first adopt a de-

veloper intent codebook [50] and manually label the interaction

links that appeared in each dialog. The developer intent codebook

Table 2: Developer intent category in live chat

Code Label Description

OQ Original Question The first question from the developer to initiate the dialog

CQ Clarifying Question Developers ask for clarifications

FD Further Details Developers provide more details

FQ Follow Up Question Developers ask for follow up questions about relevant issues

PA Potential Answer A potential answer or solution provided by developers

PF Positive Feedback Developer provides positive feedback for working solutions

NF Negative Feedback Developer provides negative feedback for useless solutions

GG Greetings/Gratitude Greetings or expressing gratitude

is built from previous work on user intent in information-seeking

conversations [50], as summarized in Table 2.

Then, we employ an open card sort [52] process to assign an

interactive pattern to a dialog based on the sequence of developers’

intents. In an open sort, the sorting begins with no predefined

patterns and participants develop their own patterns. The two

participants individually assigned patterns to the same dialogs. The

sorting process is conducted in multiple rounds. In the first round,

all participants label dialogs of one community, with an intensive

discussion session to achieve conceptual coherence about patterns.

A shared pool of patterns is utilized and carefully maintained, and

each participant could select existing patterns from and/or add new

pattern names into the shared pool. Then we divide into two teams

to label the remaining dialogs. Each dialog will receive two pattern

labels, and we resolve disagreement based on majority voting. The

average Cohen’s Kappa about interactive patterns is 0.82.

After identifying underlying interaction patterns, we further

explore their statistical characteristics in aspects of distribution and

duration. We calculate the duration of a dialog as follows:
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑒 −𝑇𝑖 (3)

where 𝑇𝑒 is the time that the dialog ended, and 𝑇𝑖 is the time that

the initiator launched the dialog. This metric can reflect the life

cycle of one dialog.

Note that, to keep the workload of manually labeling each dialog

manageable, we answer RQ3 and RQ4 by manually analyzing the

749 sampled dialogs. We believe that although we could only man-

ually analyze a small percentage of the disentangled dialogs, this

dataset supports our methodology as being useful for discovering

valuable findings.

4 RESULTS AND ANALYSIS

4.1 RQ1: Communication Profile

To answer this question, we analyze two metrics, i.e. utterance time

and response time. Next, we report the results of comparing these

metrics across the eight Gitter communities.

Utterance Time. Figure 3(a) compares the distribution of ut-

terances’ intensity over 24 hours, across the eight communities.

First, we identify the peak hours of each community in red dashed

circles, then highlight the time windows based on the peak hours

contained in it with the yellow shade. We can see that, there are

three windows of peak hours, which are from UTC 9 to 10, 13 to 14,

and 18 to 21. In addition, UTC 1 to 6 corresponds to the low chatting-

activity hours. Developers are less active in chatting at that time.

Figure 3(b) shows the distribution of the utterances across different

weekdays. We can see that developers chat more on workdays than

on weekends (UTC).

ResponseTime. Figure 3(c) exhibits the distribution of response

time calculated from the 173,278 dialogs of the eight communities.

The average response time is 220 seconds, the maximum time lag is

1,264 seconds, and the minimum time lag is two seconds. The peak

point is (23, 393), which means there are 393 dialogs that got replies

in 23 seconds. We can see that, the time lag largely increases from

0 to 23 seconds, and descend in a long tail. Eighty percent of the

dialogs get first responses in 343 seconds. As reported by a recent

study on Stack Overflow [43], the threshold of fast answers was

439 seconds. In comparison, live chat gets 50% faster ((439-220)/439)

395



ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Lin Shi , Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang

(a) Hourly distribution

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

Mon Tue Wed Thu Fri Sat Sum

Ut
te

ra
nc

e 
Pe

rc
en

ta
ge

UTC Time (weekday)

Angular
Appium
Deeplearning4j
Docker
Ethereum
Gitter
Nodejs
TypeScript

(b) Day of week distribution

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

C
um

ul
at

iv
e 

Pr
op

or
tio

n

N
um

be
r

Time (second)

(23,393)

(343,80%)

(c) Frequency distribution of response times

Figure 3: Statistic results about communication profiles

replies than the fast answers in Stack Overflow. Therefore, we

consider the responses from the live chat are relatively fast.

Answering RQ1: The peak hours for live chat are from UTC 9

to 10, 13 to 14, and 18 to 21, while UTC 1 to 6 is the low-active hours.

Developers are more likely to chat on workdays than weekends,

especially on Wednesdays and Thursdays (UTC). Moreover, live

chat gets 50% faster replies than the fast answers in Stack Overflow.

4.2 RQ2: Community Structure

To answer RQ2, we first examine the structural properties of the de-

veloper social networks across the eight communities, and then try

to draw some common observations based on these social networks.

Properties of social networks. Table 3 shows the social net-

work properties of the eight communities. Init.%, Resp.%, and Both%

denote the percentage of developers serving the role of dialog ini-

tiators, respondents, and both. Intuitively, we consider that respon-

dents share their knowledge with others, while initiators receive

knowledge from others. We can see that, the four communities

(Appium, Docker, Gitter, and Ethereum) have a higher percent-

age (75.04%-81.70%) of dialog initiators and a lower percentage

(18.30%-24.96%) of respondents/both. The high percentage of dialog

initiators may relate to the applicable nature of the open-source

projects, e.g., Ethereum is one of the most widely used open-source

blockchain systems, thus there are a large number of users acquir-

ing technical support from live chat. The other four communities

(Angular, DL4J, Nodejs, and Typescript) have a higher percentage

(29.94%-48.62%) of respondents/both. A possible explanation is that

these four projects are more widely used for development purposes,

e.g., Angular is a platform for building mobile and desktop web

applications, therefore, such communities appear to be knowledge-

sharing and collaborative.

Categorizing developer social networks. Figure 4 shows the

social network visualizations of the eight communities generated

by Gephi. Each node represents one developer, and the edge de-

notes the dialog relationship between two developers. We color

the vertex of the initiator with blue, the vertex of the respondent

with white, and the vertex of both roles with orange. In addition,

the node’s size indicates its corresponding degree. Based on the

observation on community structures, we categorize the eight com-

munities into three groups, consisting of: (1) Polaris network is

a type of highly centralized network where the community is or-

ganized around its single focal point; (2) Constellation network

is a type of moderately centralized network where the community

is organized around its multiple focal points; and (3) Galaxy net-

work is a type of decentralized network where all individuals in

the community have similar relationships. In Figure 4, the four com-

munities on the top (i.e., Angular, DL4J, NodeJS, and Typescript)

belong to the Constellation network, i.e., moderately centralized

network. Three communities (i.e., Appium, Docker, and Gitter) be-

long to the Polaris network, i.e., a highly centralized network. The

remaining Ethereum community belongs to the Galaxy network,

i.e., decentralized network. Previous studies have shown that a

highly centralized network may reflect an uneven distribution of

knowledge across the community, where knowledge is mostly con-

centrated at the focal points [38, 44]. Therefore, the three Polaris

communities (Appium, Docker, and Gitter) may have a higher risk

of single-point failure, if the focal developer is inactive, whereas

the Galaxy network (Ethereum) has the lowest risk, followed by

the Constellation network (Angular, DL4J, NodeJS, and Typescript).

In Table 3, we can also see that the Constellation networks and

Polaris networks have higher scores in terms of average degree

(1.96-9.15), betweenness (0.000273-0.001342), and closeness (0.31-

0.43). The phenomena indicate that the focal points in Constellation

networks and Polaris networks make the communities more con-

nected. A study on email-connected social networks [11] shows that

the mean betweenness of developers is 0.0114, which on average is

higher than live chat communities. Nodes with high betweenness

may have considerable influence within a network in allowing in-

formation to pass from one part of the network to the other. Lower

betweenness indicates that developers in the live chat may have

less influence than developers in email in spreading information.

However, the average in-degree and out-degree of networks built

on emails are significantly lower, with 0.00794 and 0.00666 for de-

velopers. While developers in live chat have more concentration

and higher density, along with the closeness centrality values, indi-

cating a more closely connected community than that from email.

Developers in Constellation communities have higher clustering

coefficient scores (0.14-0.60), indicating that developers in Constel-

lation communities are more densely connected, i.e., the developers

of Angular, DL4J, Nodejs, and Typescript know each other better

than the others.

Answering RQ2: By visualizing the social networks of eight

studied communities, we identify three social network structures

for developers’ live chat. Half of the communities (4/8) are Constel-

lation networks. A minority of the communities (3/8) are Polaris

networks. Only one community belongs to the Galaxy network. In

396



A First Look at Developers’ Live Chat on Gitter ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

Table 3: Social Network measures of the eight communities

Constellation Polaris Galaxy

Angular DL4J Nodejs Typescript Appium Docker Gitter Ethereum

Init. % 54.54% 51.38% 70.06% 56.94% 75.04% 76.22% 75.33% 81.70%

Resp. % 13.90% 11.39% 6.83% 12.42% 7.43% 5.84% 9.04% 5.59%

Both % 31.56% 37.23% 23.11% 30.65% 17.53% 17.94% 25.62% 12.71%

Degree 9.15 5.02 2.75 4.2 2.59 1.96 2.07 1.92

Betweenness 0.000273 0.000867 0.000468 0.000786 0.001035 0.001173 0.001342 0.000231

Closeness 0.35 0.42 0.31 0.34 0.35 0.37 0.43 0.34

Diameter 8 6 13 9 10 10 8 15

Clustering

coefficient
0.41 0.6 0.14 0.33 0.2 0.13 0.2 0.16

(a) Constellation {from left to right: Angular, DL4J, Nodejs, Typescript }

(b) Polaris {from left to right: Appium, Docker, Gitter } (c) Galaxy { Ethereum }

Figure 4: Visualization of the eight developer live-chat social networks

comparison, we find that developers in the live chat may have less

influence than developers in email in spreading information, but

have a more closely connected community than that from email.

4.3 RQ3: Discussion Topic

Figure 5 shows the distribution of discussion topics in developer live

chat. The figure shows discussion topics in gray and their categories

in white, as well as the percentages of the corresponding dialogs.

The taxonomy expands outwards from higher-level categories to

lower-level categories and topics. In this study, we extend the Beyer

et al.’s category to accommodate the open and live chat by: (1)

adding social chatting and general development categories; and

(2) decomposing łConceptualž and łDiscrepancyž categories to

distinguish more valuable information such as unwanted behavior

and new features. For more information on the dialog topics, we

provide a public Github repository with details and examples4.

4https://github.com/LiveChat2021/LiveChat#34-rq3-discussion-topic

The most inner circle shows that, across all eight communities,

89.05% of dialogs are domain-related (DR) topics such as topics

related to the business domain of the community, while 10.95% of

dialogs are non-domain related (N-DR) topics such as general de-

velopment or social chatting. DR topics can be further decomposed

into three sub-categories based on their different purposes. These

include solution-oriented dialogs which have the highest propor-

tion (35.25%), followed by problem-oriented dialogs (32.98%) and

knowledge-oriented dialogs (20.83%). Among the 35.25% solution-

oriented dialogs, 29.37% are about API usage, and 5.87% are about

Review. Among the 32.98% problem-oriented dialogs, most of them

(20.29%) discuss discrepancy, consisting of unwanted behavior, do not

work, reliability issue, performance issue, and test/build failure. We

can see that, developers discuss more ‘unwanted behavior’ and ‘do

not work’, than reliability issues, performance issues, and test/build

failures. Among the 20.83% knowledge-oriented dialogs, most of

them (13.75%) discuss conceptual, consisting of background info,

397



ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Lin Shi , Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang

DR
89.05%

N-DR
10.95%

     Solution-oriented
35.25%

Problem-
oriented
32.98%

Knowledge-oriented
20.83%

Social
Chatting
5.87%

General 
Development

5.07%

API Usage
29.37%

Review
5.87%

Discrepancy
     20.29%

Error
11.62%

API Change
1.07%

Conceptual
13.75%

Learning
7.08%

Unwanted 
     Behavior
         8.28%

Do not
  work

       4.81%

Reliability 
Issue

3.87%

Performance 
Issue

1.74%
Test/Build 

Failure
1.60%

Background Info
8.41%

New
Features
3.60%

Design
1.74%

Figure 5: Distribution of discussion topics in developer live

chat by reading from center to outside

new features, and design. Overall, the top three frequent topics are

API usage (29.37%), Error (11.62%), and Background info (8.41%).

Answering RQ3: Developers launch solution-oriented dialogs

and problem-oriented dialogs more than knowledge-oriented di-

alogs. Nearly 1/3 of dialogs are about API usage. Developers discuss

more error, unwanted behavior, and do-not-work, than reliability

issues, performance issues, and test/build failures.

4.4 RQ4: Interaction Pattern

Interaction patterns. Figure 6 illustrates the six interaction pat-

terns in live chat, constructed using open card sorting as introduced

in Section 3.3.4. This figure shows dialog initiators in blue nodes,

respondents in yellow nodes. The lines denote the reply-to rela-

tionships, and the labels represent developer intents in Table 2. In

this work, we identify the following six interaction patterns: (1)

P1: Exploring Solutions. Given the original questions posted by

the dialog initiator, other developers provide possible answers. But

D1

Dx Dx

OQ

PAi

PAn

NF
PF

P1: Multiple Solutions

D1

D2 Dx

OQ

PA1

FQ/  F/GG
FD

P2: Clarifying Answers

P5: Self-answered Monologue

D1 OQ

D1

PA

D1

D2

OQ

PA F/GG

P3: Clarifying Questions

D2

CQ

FD

P4: Direct/Discussed Answer

D1 OQ

PA F/GG

Dx

P6: Unanswered Monologue

D1 OQ

Figure 6: Interactive patterns, F denotes feedback including

negative feedback and positive feedback, dashed lines de-

note optional interaction.

6
4
7

1
2
4
4

2

16
22

31
22

9
19
18

30

18
21

25
19

13
11

20
19

27
11

26
38

45
45
31

34

1
1

2

1
1

32
40

19

20
26

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Angular
Appium

DL4J
Docker

Ethereum
Gitter

Nodejs
Typescript

P1 (4%) P2 (21%) P3 (18%) P4 (32%) P5 (1%) P6 (24%)

Figure 7: Distribution of interaction patterns among differ-

ent communities

the initiator gives negative feedback indicating these answers do

not address the question. When the correct answer is posted, the

initiator gives positive feedback and ends the dialog. (2) P2: Clari-

fying Answer. Given the original questions posted by the dialog

initiator, another developer provides a possible answer. Then the

initiator posts follow-up questions to clarify the answer until the

initiator fully understands. (3) P3: Clarifying Question. Given

the original questions posted by the dialog initiator, the respondent

requires the initiator to clarify the question in more detail until

they fully understand. Then the respondent posts an answer, and

the initiator gives feedback or greetings. (4) P4: Direct/Discussed

Answer. Given the original questions posted by the dialog initiator,

the respondent directly answers, or answers after an internal discus-

sion. (5) P5: Self-answered Monologue. The original questions

posted by the dialog initiator are answered by himself or herself.

(6) P6: Unanswered Monologue. The original questions posted

by the dialog initiator are not answered.

Percentage of patterns. Figure 7 shows the percentage of in-

teraction patterns in different communities, and the average per-

centages are shown in the legends. P1~P6 refer to the six interaction

patterns defined above. We can see that the direct/discussed answer

(P4) pattern takes the largest proportions in most communities.

In addition, we note that quite a few dialogs (1%) belong to self-

answered monologue, while 24% of dialogs belong to unanswered

monologue. Nearly 1/4 of dialogs did not get responses in live chat.

We will discuss more monologue in Section 5.1.

Duration of patterns. Figure 8 shows the violin plots with the

distribution of duration for each pattern. P1~P5 refer to interaction

patterns defined above. Here we only exhibit five patterns because

Figure 8: Distribution of duration for interaction patterns,

except for unanswered monologues.

398



A First Look at Developers’ Live Chat on Gitter ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

the P6 refers to unanswered monologues which barely have a du-

ration. We can see that although P1 takes a small proportion in

dialogs, it lasts the longest. Its average duration is 1.00 hours. P2

and P3 last slightly longer than P4. P5 lasts the shortest, and its

average duration is 0.02 hour.

Answering RQ4: Six interaction patterns are identified in live

chat: exploring solutions, clarifying answer, clarifying question, di-

rect/discussed answer, self-answered monologue, and unanswered

monologue. The direct/discussed answer pattern takes the largest

proportions in most communities. There are still 1/4 dialogs that did

not get responses on average. Dialogs that belong to the Exploring

Solutions pattern last the longest time than others.

5 DISCUSSION

In this work, we take a first look at developers’ live chat on Gitter

in terms of communication profile, community structure, discus-

sion topic, and interaction pattern. Our work paves the way for

other researchers to be able to utilize the same methods in other

software communities. Additionally, as communication is a large

part of successful software development, and Gitter is one of the

main platforms for communication of GitHub users, it is important

to explore how software engineers use Gitter and their pain points

of using it. Aiming at promoting efficient and effective OSS com-

munications, we discuss the main implications of our findings for

OSS developers, communities, platform vendors, and researchers.

5.1 Individual Developers

Based on our findings, we present the following implications for in-

dividual OSS developers to attract attentions and receive responses

effectively and efficiently.

(1) Provide example code or data when seeking solution

help (RQ3, RQ4). In Figure 5, we reported that, there are nearly

1/3 dialogs are problem-oriented. In the live chat, it is important to

provide example code in problem-oriented dialogs, to make other

developers quickly understand and avoid missing key information.

This finding is also in line with the evidence provided by previous

studies [12, 14] on Stack Overflow. Here is an example of showing

<D1> Hey there, anyone has an idea on this issue: Have quotes

showing up in the UI. I tried to remove it by replacing it

in the .ts file...I’m not sure what else to try.

<D2> I’m having trouble understanding what’s going on. Can

you toss your example in a plunker?

the importance of using examples in the live chat. The correspond-

ing dialog confirms the Clarifying Question Pattern (P3) with multi-

ple back-and-forth interactions for clarifying questions. If examples

are provided at the beginning, the process of issue-resolving would

be expedited. Particularly, the Angular community gives great im-

portance to example demonstration. Developers are encouraged to

create examples via a demonstration platform, named Plunker [1].

(2) Be aware of low-active hours (RQ1). Our results show

that developers are more active during some time slices in live chat.

Figure 3(a) demonstrates the most active time slices are UTC 9-

10, 13-14, and 18-21, corresponding to Central European/American

daytime or Asia nighttime. Noticeably, more developer live chatting

happens on Wednesdays and Thursdays than on other weekdays

(UTC), which possibly corresponds to communication, coordination,

and preparation for integration/release deadlines on Fridays. This

observation also confirms the łcommercially viable alternativež of

the OSS projects reported in recent studies [23, 29, 68]. One of

the common findings is that the traditional notion of OSS projects

that are driven by voluntary developers is now outdated. OSS has

become a commercially viable alternative, and some OSS projects

have become critical building blocks for organizations worldwide.

For example, Docker is widely used by software companies around

the world5, including Adobe, AT&T, PayPal, etc. Therefore, instead

of chatting on weekends, developers likely discuss their problems

in the live chat on workdays.

While low-active time slices (UTC 1-6) mostly correspond to

Central European/American nighttime or Asia day time. In cases

where developers find issues and need support during low-active

hours, we suggest several options. First, it is recommended to simul-

taneously post questions to other alternative platforms, e.g., issues

and emails. Second, they better follow up in live-chat if not receiv-

ing timely responses to their questions posted during low-active

hours. Finally, employ some automated reminder bot, for example,

to review the list of questions posted during low-active hours.

(3) Avoid asking amid ongoing discussions (RQ4). When

identifying the unanswered monologues patterns from dialogs, we

note that 30% of them are launched in the middle of ongoing active

and intense conversations on a different topic. In such cases, new

questions are easily flooded by the utterances of the ongoing discus-

sions. Therefore, to increase the opportunity of getting responses,

developers could post their questions after the ongoing discussions.

In case that an urgent matter emerges, we suggest that the platform

vendors provide special accommodations to flag such urgency and

redirect the team’s attention to it, such as multi-threaded conversa-

tion (e.g., in Slack) or a highlight tag for urgent questions and let

others supervise the usage of an urgent tag to avoid abuse.

5.2 OSS Communities

we provide the following recommendations for OSS managers to

improve the management and coordination of the communities.

(1) Mitigate the risk of single-point failure (RQ2). As re-

ported in RQ2, the three Polaris communities (Appium, Docker, and

Gitter) may have a higher risk of single-point failure, if the focal

developer left or became inactive. It is noticeable that there are

some second focal points smaller than those most focal ones in the

three Polaris networks, and this may suggest practical strategies in

order to mitigate the risk of single-point failure. For example, the

Polaris communities may design and employ appropriate incentives

or policies to second focal developers, for improving the resilience

of the live chat communities.

(2) ImproveOSS documentation for newcomers (RQ1,RQ4).

It is reported that some newcomers complained that it is hard to

start on a new project and get timely help from other community

members, which may make them gradually lose motivation, or even

give up on contributing [63]. To facilitate newcomers to familiar-

ize themselves and make contributions in a more efficient manner,

OSS communities may consider utilizing the results of our study to

improve OSS documentation. For example, the results of RQ1 show

active and low-active time slices, and the results of RQ4 show many

5https://www.docker.com/customers

399



ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Lin Shi , Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang

unansweredmonologues are asking amid ongoing discussions. That

information could be incorporated into the README documents

for newcomers, who are looking to contribute to a project and how

to get timely help from others.

5.3 Platform Vendors

This section discusses several desired features for facilitating more

productive conversations. Specifically, these are organized from

communication platform vendors’ perspective, in support of more

intelligent and productive chatting options, leveraging on mining

and knowledge sharing of intensive historical conversations.

(1) Highlight and organize conversation topics (RQ3). As

suggested by the previous study, multi-dimensional separation of

concerns [47] is a powerful concept supporting collaborative de-

velopment by breaking a large discussion down into many smaller

units. It highlights that the online communication platform vendors

could provide support for a set of predefined panels that focus on

certain topics. In the results of RQ3, we provide a taxonomy of

discussion topics in live chat. The online communication platform

vendors could refer to this taxonomy to create topic panels. For

example, API-usage panel, Error panel, Background-info panel, etc.

These multiple panels could bring the following benefits to commu-

nity members: (i) quickly understanding and retrieving the intents

of the dialog initiators; (ii) reducing interference and focusing more

on topics of interest; and (iii) identifying important information

reported by the developers.

(2) Annotate important questions (RQ3). When investigat-

ing dialog topics, we note that certain types of dialogs suggest infor-

mation for future software evolution. For example, there are 3.6%

dialogs discussing new features, and 8.28% discussing unwanted

behaviors. These dialogs are valuable for product teams to plan

future releases. In the meanwhile, other types of dialogs indicate

unrevealed defects of existing systems. For example, 11.62% dialogs

discuss errors, 4.81% discussing something that does not work, 3.87%

discussing reliability issues, and 1.74% discussing performance is-

sues. Properly annotating those dialogs with łFeature Requestž,

łEnhancementž, and łBugsž would help to preserve valuable infor-

mation, and contribute to productivity and quality improvement of

the software. As an example, techniques for mining live chat have

been explored for identifying feature requests from chat logs [57].

5.4 Researchers

Research in the SE area could dedicate to promote efficient and

effective OSS communication in the following directions.

(1) Automatically recommend similar questions (RQ4). Ex-

isting online communication platforms only record the massive

history chat messages, but do not consider a deeper utilization of

those historical data. Actually, we note that developers post similar

questions in live chat sometimes. In DL4J, one initiator posted a

question, and he got a reply like this: łSomeone else asked a very

similar question a while ago.ž However, it is not easy for the initiator

to accurately retrieve the similar question out from the massive his-

tory messages. In addition, some questions that got unanswered are

largely due to many similar questions being previously answered.

Therefore, we consider that, it will save developers’ effort if re-

searchers could develop approaches that automatically recommend

similar questions and the corresponding discussions.

(2) Automatically assign appropriate respondents (RQ4).

By analyzing the dialogs belonging to exploring solution patterns

(P1), we note that respondents who are not quite familiar with the

technologies related to the posted questions might give ineffective

solutions. Although such discussions could make developers under-

stand the problem better, the multiple fail-and-try interactions still

prolong the process of issue-resolving. Therefore, to make conver-

sations more productive, it is expected to develop approaches that

could recommend or assign appropriate respondents according to

their historical answers.

(3) Automatically push valuable information to project

repositories (RQ3). Valuable information such as feature requests

or issue reports, either manually annotated by developers or au-

tomatically detected by tools, needs to be well-documented and

well-traced in the scope of project repositories. Typically, code

repositories such as Github or Gitlab provide the functionality of is-

sue tracking. It would be more efficient if researchers could provide

a convenient way to directly push or integrate the valuable informa-

tion into the code repository. In addition, the following linguistic

patterns might be helpful to automatically classify dialog topics.

It is observed that questions from the API usage category include

phrases such as: łhow to do sth?ž, łhow can I do sth?ž, łcan anyone

help me with sth?ž, łis there any way to sth?ž, or łI want/need to

do sthž. For example, łHow to bundle my Angular 2 app into a

‘bundle.js’ file?ž and łCan anyone help me with PWA using angular

2ž. Questions from the Error category are likely to be łI get/receive

this errorž, łAnyone had an error like thisž, łDoes anyone know a

solution for sthž, or directly posting the specific exception names.

For example, łI receive a NotFound errorž and łAnyone had an

error like this before when trying to load a route?ž Questions from

the Background info category are likely to be łwhat/why/when...ž, łI

would like to know sthž, or łis there sth for...ž. For example, łWhen

Appium will support Xcode 8.2?ž and łAre there any limitations

for automating the iOS app made with Swift 3?ž.

(4) Analyze effects of social chatting (RQ3). As reported in

RQ3, 10.95% of dialogs are non-domain related (N-DR) topics such

as general development or social chatting. A recent study [46] em-

phasizes an important role of social interactions, such as the simple

phrase łHow was your weekend?ž, to show peer support for de-

velopers working at home during the COVID-19 pandemic. Future

work may explore more patterns and effects of social chatting, e.g.,

pre/post-pandemic comparison.

5.5 Threats To Validity

External Validity. The external threats relate to the generalizabil-

ity of the proposed approach. Our empirical study used eight Top-1

most participated open source communities from Gitter. Although

we generally believe all communities may benefit from knowledge

learned from more productive, effective communication styles, fu-

ture studies are needed to focus on less active communities and

comparison across all types of communities.

Internal Validity. The internal threats relate to experimental

errors and biases. The first threat relates to the accuracy of the

dialog disentanglement model adopted by us. Although we select

the best model to disentangle dialogs from the state-of-the-art ap-

proaches, the accuracy score for the best model is still not quite

satisfactory. It will have an impact on the results of RQ1 and RQ2.

400



A First Look at Developers’ Live Chat on Gitter ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

To address this issue, one of our ongoing works is to build a new

efficient dialog disentanglement model based on deep learning to

improve the accuracy of existing disentanglement approaches. The

second threat relates to the random sampling process. Sampling

may lead to incomplete results, e.g., topic taxonomy and interaction

patterns. In the future, we plan to enlarge the analyzed dataset and

inspect whether new topics or interaction patterns are emerging.

The third threat might come from the process of manual disentan-

glement and card sorting. We understand that such a process is

subject to introducing mistakes. To reduce that threat, we establish

a labeling team, and perform peer-review on each result. We only

adopt data that received the full agreement, or reach agreements

on different options.

Construct Validity. The construct threats relate to the suitabil-

ity of evaluation metrics. In this study, manual labeling of topics and

interactive patterns is a construct threat. To minimize this threat,

we use a well-known approach used by previous work [5, 10, 53]

to build reasonable taxonomies for textual software artifacts.

6 RELATED WORK

Our work is related to previous studies that focused on synchronous

and asynchronous communication in the OSS community.

SynchronousCommunication inOSS community.Recently,

more and more work has realized that live chat via modern com-

munication platforms plays an increasingly important role in team

communication. Lin et al. [40] conducted an exploratory study

on understanding the role of Slack in supporting software engi-

neering by surveying 104 developers. Their research revealed that

developers use Slack for personal, team-wide, and community-wide

purposes, and developers use bots for team and task management

in their daily lives. They highlighted that live chat plays an increas-

ingly significant role in software development, replacing email

in some cases. Shihab et al. [58, 59] analyzed the usage of devel-

oper IRC meeting channels of two large open-source projects from

several dimensions: meeting content, meeting participants, their

contribution, and meeting styles. Their results showed that IRC

meetings are gaining popularity among open source developers,

and highlighted the wealth of information that can be obtained

from developer chat messages. Yu et al. [67] analyzed the usage of

two communication mechanisms in global software development

projects, which are synchronous (IRC) and asynchronous (mailing

list). Their results showed that developers actively use both commu-

nication mechanisms in a complementary way. To sum up, existing

empirical analysis of live chat mainly focused on the usage purpose

[40], the usage of live meetings [58, 59], and comparison with dif-

ferent communication mechanisms and knowledge-share platforms

[67]. There is a lack of in-depth analysis of the community proper-

ties and the detailed discussion contents. Our study bridges that gap

with a large-scale analysis of communication profiles, community

structures, dialog topics, and interaction patterns in live chat.

Asynchronous Communication in OSS community. Prior

studies have empirically analyzed asynchronous communication in

the OSS community, including mailing-list, issue discussions, and

Stack Overflow. Bird et al. [11] mined email social network on the

Apache HTTP server project. They reported that the email social

network is a typical electronic community: a few members account

for the bulk of the messages sent, and the bulk of the replies. Di

Sorbo et al. [60] proposed a taxonomy of intentions to classify sen-

tences in developer mailing lists into six categories: feature request,

opinion asking, problem discovery, solution proposal, information

seeking, and information giving. Although the taxonomy has been

shown to be effective in analyzing development emails and user

feedback from app reviews [48], Huang et al. [36] found that it

cannot be generalized to discussions in issue tracking systems, and

they addressed the deficiencies of Di Sorbo et al.’s taxonomy by

proposing a convolution neural network based approach. Arya et al.

[4] identified 16 information types, such as new issues and requests,

solution usage, etc., through quantitative content analysis of 15 issue

discussion threads in Github. They also provided a supervised clas-

sification solution by using Random Forest with 14 conversational

features to classify sentences. Allamanis and Sutton [3] presented

a topic modeling analysis that combines question concepts, types,

and code from Stack Overflow to associate programming concepts

and identifiers with particular types of questions, such as, łhow

to perform encodingž. Similarly, Rosen and Shihab [51] employed

Latent Dirichlet Allocation-based topic models to help us summa-

rize the mobile-related questions from Stack Overflow. Our work

differs from existing research in that we focus on synchronous

communication which poses different challenges as live chat logs

are informal, unstructured, noisy, and interleaved.

7 CONCLUSION AND FUTUREWORK

In this paper, we have presented the first large-scale study to gain

an empirical understanding of OSS developers’ live chat. Based on

173,278 dialogs taken from eight popular communities on Gitter,

we explore the temporal communication profiles of developers, the

social networks and their properties towards the community, the

taxonomy of discussion topics, and the interaction patterns in live

chat. Our study reveals a number of interesting findings. Moreover,

we provide recommendations for both OSS developers and com-

munities, highlight advanced features for online communication

platform vendors, and provoke insightful future research questions

for OSS researchers. In the future, we plan to investigate how well

can we automatically classify the dialogs into different topics, as

well as attempt to construct knowledge bases according to already

answered questions and their corresponding solutions from live

chat. We hope that the findings and insights that we have uncovered

will pave the way for other researches, help drive a more in-depth

understanding of OSS development collaboration, and promote a

better utilization and mining of knowledge embedded in the mas-

sive chat history. To facilitate replications or other types of future

work, we provide the utterance data and disentangled dialogs used

in this study online: https://github.com/LiveChat2021/LiveChat.

ACKNOWLEDGMENTS

We deeply appreciate anonymous reviewers for their constructive

and insightful suggestions towards improving this manuscript. This

work is supported by the National Key Research and Development

Program of China under Grant No. 2018YFB1403400, the National

Science Foundation of China under Grant No. 61802374, 62002348,

and 62072442, and Youth Innovation Promotion Association CAS.

401

https://github.com/LiveChat2021/LiveChat


ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Lin Shi , Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang

REFERENCES
[1] A Tool to Prototype and Experiment Angular Codes. 2020. Plnkr. http://plnkr.co/.
[2] Explosion AI. 2020. Spacy. https://spacy.io/.
[3] Miltiadis Allamanis and Charles Sutton. 2013. Why, When, and What: Analyzing

Stack Overflow Questions by Topic, Type, and Code. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13. IEEE Computer
Society, 53ś56. https://doi.org/10.1109/MSR.2013.6624004

[4] Deeksha Arya, Wenting Wang, Jin L. C. Guo, and Jinghui Cheng. 2019. Analysis
and Detection of Information Types of Open Source Software Issue Discussions.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
2019. 454ś464. https://doi.org/10.1109/ICSE.2019.00058

[5] Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going Big: A Large-scale
Study on What Big Data Developers Ask. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019. ACM, 432ś442. https://doi.org/
10.1145/3338906.3338939

[6] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An
Open Source Software for Exploring and Manipulating Networks. In Proceedings
of the International AAAI Conference on Web and Social Media, Vol. 3.

[7] Alex Bavelas. 1950. Communication Patterns in Task-oriented Groups. The
journal of the acoustical society of America 22, 6 (1950), 725ś730.

[8] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger. 2017. Analyzing the Relationships
between Android API Classes and Their References on Stack Overflow. Technical
Report. University of Klagenfurt, University of Sannio.

[9] Stefanie Beyer, ChristianMacho, Martin Pinzger, andMassimiliano Di Penta. 2018.
Automatically Classifying Posts into Question Categories on Stack Overflow. In
Proceedings of the 26th Conference on Program Comprehension, ICPC 2018. ACM,
211ś221. https://doi.org/10.1145/3196321.3196333

[10] Stefanie Beyer and Martin Pinzger. 2014. A Manual Categorization of Android
App Development Issues on Stack Overflow. In 30th IEEE International Conference
on Software Maintenance and Evolution. IEEE Computer Society, 531ś535. https:
//doi.org/10.1109/ICSME.2014.88

[11] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. 2006. Mining Email Social Networks. In Proceedings of the 2006 interna-
tional workshop on Mining software repositories. 137ś143. https://doi.org/10.1145/
1137983.1138016

[12] A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and N. A. Kraft.
2013. Building Reputation in StackOverflow: An Empirical Investigation. In
2013 10th Working Conference on Mining Software Repositories (MSR). 89ś92.
https://doi.org/10.1109/MSR.2013.6624013

[13] Jérémie Bouttier, Philippe Di Francesco, and Emmanuel Guitter. 2003. Geodesic
Distance in Planar Graphs. Nuclear physics B 663, 3 (2003), 535ś567.

[14] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2018. How to Ask for Tech-
nical Help? Evidence-based Guidelines for Writing Questions on Stack Overflow.
Inf. Softw. Technol. 94 (2018), 186ś207. https://doi.org/10.1016/j.infsof.2017.10.009

[15] Preetha Chatterjee, Kostadin Damevski, Nicholas A. Kraft, and Lori L. Pollock.
2020. Software-related Slack Chats with Disentangled Conversations. In MSR
’20: 17th International Conference on Mining Software Repositories. ACM, 588ś592.
https://doi.org/10.1145/3379597.3387493

[16] Microsoft Corporation. 2020. Nodejs. https://nodejs.org/en/.
[17] Microsoft Corporation. 2020. Typescript. https://www.typescriptlang.org/.
[18] Fabio Crestani and Mounia Lalmas. 2001. Logic and Uncertainty in Information

Retrieval. In Lectures in Information Retrieval, Lecture Notes in Computer Science.
Springer Verlag. https://doi.org/10.1007/3-540-45368-7_9

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Volume 1 (Long and Short Papers). Association for Computational Linguistics,
4171ś4186. https://doi.org/10.18653/v1/n19-1423

[20] Reinhard Diestel. 2005. Graph theory. 2005. Grad. Texts in Math 101 (2005).
[21] Inc Docker. 2020. Docker. https://www.docker.com/.
[22] Sally Fincher and Josh D. Tenenberg. 2005. Making Sense of Card Sorting Data.

Expert Syst. J. Knowl. Eng. 22, 3 (2005), 89ś93. https://doi.org/10.1111/j.1468-
0394.2005.00299.x

[23] Brian Fitzgerald. 2006. The Transformation of Open Source Software. MIS Q. 30,
3 (2006), 587ś598.

[24] Ethereum Foundation. 2020. Ethereum. https://ethereum.org/en/.
[25] JS Foundation. 2020. Appium. http://appium.io/.
[26] Linton C Freeman. 1977. A Set of Measures of Centrality Based on Betweenness.

Sociometry (1977), 35ś41.
[27] Adam Gibson. 2020. Deeplearning4j. https://deeplearning4j.org/.
[28] Gitter. 2020. REST API. https://developer.gitter.im/docs/rest-api.
[29] Jesús M. González-Barahona and Gregorio Robles. 2013. Trends in Free, Li-

bre, Open Source Software Communities: From Volunteers to Companies / Ak-
tuelle Trends in Free-, Libre-, und Open-Source-Software-Gemeinschaften: Von
Freiwilligen zu Unternehmen. it Inf. Technol. 55, 5 (2013), 173ś180. https:

//doi.org/10.1524/itit.2013.1012
[30] Google. 2020. Angular. https://angular.io/.
[31] Google. 2020. Gitter. https://gitter.im/.
[32] Google. 2020. Slack. https://slack.com/.
[33] Gaoyang Guo, Chaokun Wang, Jun Chen, and Pengcheng Ge. 2018. Who Is

Answering to Whom? Finding łReply-Tož Relations in Group Chats with Long
Short-Term Memory Networks. In Proceedings of the 7th International Conference
on Emerging Databases. https://doi.org/10.1007/s10586-018-2031-4

[34] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie van
Deursen. 2013. Communication in Open Source Software Development Mailing
Lists. In Proceedings of the 10th Working Conference on Mining Software Reposi-
tories, MSR ’13. IEEE Computer Society, 277ś286. https://doi.org/10.1109/MSR.
2013.6624039

[35] Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, and Xin Xia. 2020.
What Do Programmers Discuss About Deep Learning Frameworks. Empir. Softw.
Eng. 25, 4 (2020), 2694ś2747. https://doi.org/10.1007/s10664-020-09819-6

[36] Qiao Huang, Xin Xia, David Lo, and Gail C. Murphy. 2018. Automating Intention
Mining. IEEE Transactions on Software Engineering PP, 99 (2018), 1ś1. https:
//doi.org/10.1109/ICSM.2015.7332474

[37] Verena Käfer, Ivan Bogicevic, Stefan Wagner, and Jasmin Ramadani. 2018. Com-
munication in Open-source Projects-end of the E-mail Era?. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings,
ICSE 2018. ACM, 242ś243. https://doi.org/10.1145/3183440.3194951

[38] Valdis Krebs and June Holley. 2004. Building Sustainable Communities through
Social Network Development. The Nonprofit Quarterly 11 (01 2004), 46ś53.

[39] Jonathan K. Kummerfeld, Sai R. Gouravajhala, Joseph Peper, Vignesh Athreya,
Chulaka Gunasekara, Jatin Ganhotra, Siva Sankalp Patel, Lazaros Polymenakos,
and Walter S. Lasecki. 2019. A Large-scale Corpus for Conversation Disentangle-
ment. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). https://doi.org/10.18653/v1/p19-1374

[40] Bin Lin, Alexey Zagalsky, Margaret-Anne D. Storey, and Alexander Serebrenik.
2016. Why Developers Are Slacking Off: Understanding How Software Teams
Use Slack. In Proceedings of the 19th ACM Conference on Computer Supported Co-
operative Work and Social Computing. 333ś336. https://doi.org/10.1145/2818052.
2869117

[41] Hui Liu, Zhan Shi, Jia-Chen Gu, Quan Liu, Si Wei, and Xiaodan Zhu. 2020. End-
to-End Transition-based Online Dialogue Disentanglement. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020.
ijcai.org, 3868ś3874. https://doi.org/10.24963/ijcai.2020/535

[42] Troupe Technology Ltd. 2020. Gitter. https://gitter.im/.
[43] Yao Lu, Xinjun Mao, Minghui Zhou, Yang Zhang, Tao Wang, and Zude Li. 2020.

Haste Makes Waste: An Empirical Study of Fast Answers in Stack Overflow. In
IEEE International Conference on Software Maintenance and Evolution, ICSME 2020.
IEEE, 23ś34. https://doi.org/10.1109/ICSME46990.2020.00013

[44] Manju, K., Ahuja, Kathleen, M., and Carley. 1998. Network Structure in Virtual
Organizations. Journal of Computer Mediated Communication (1998). https:
//doi.org/10.1111/j.1083-6101.1998.tb00079.x

[45] Andrew Meneely, Laurie A. Williams, Will Snipes, and Jason A. Osborne. 2008.
Predicting Failures with Developer Networks and Social Network Analysis. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2008. ACM, 13ś23. https://doi.org/10.1145/1453101.1453106

[46] Courtney Miller, Paige Rodeghero, Margaret-Anne D. Storey, Denae Ford, and
Thomas Zimmermann. 2021. "How Was Your Weekend?" Software Development
Teams Working From Home During COVID-19. CoRR abs/2101.05877 (2021).

[47] AnaMoreira, Awais Rashid, and João Araújo. 2005. Multi-Dimensional Separation
of Concerns in Requirements Engineering. In 13th IEEE International Conference
on Requirements Engineering (RE 2005). IEEE Computer Society, 285ś296. https:
//doi.org/10.1109/RE.2005.46

[48] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visag-
gio, Gerardo Canfora, and Harald C Gall. 2015. How Can I Improve My App?
Classifying User Reviews for Software Maintenance and Evolution. (2015), 281ś
290.

[49] Esteban Parra, Ashley Ellis, and Sonia Haiduc. 2020. GitterCom: A Dataset of
Open Source Developer Communications in Gitter. In MSR ’20: 17th International
Conference on Mining Software Repositories. ACM, 563ś567. https://doi.org/10.
1145/3379597.3387494

[50] Chen Qu, Liu Yang, W. Bruce Croft, Yongfeng Zhang, Johanne R. Trippas, and
Minghui Qiu. 2019. User Intent Prediction in Information-seeking Conversations.
In Proceedings of the 2019 Conference on Human Information Interaction and
Retrieval, CHIIR 2019. ACM, 25ś33. https://doi.org/10.1145/3295750.3298924

[51] Christoffer Rosen and Emad Shihab. 2016. What Are Mobile Developers Asking
About? A Large Scale Study Using Stack Overflow. Empir. Softw. Eng. 21, 3 (2016),
1192ś1223. https://doi.org/10.1007/s10664-015-9379-3

[52] Gordon Rugg and Peter McGeorge. 2005. The Sorting Techniques: A Tutorial
Paper on Card Sorts, Picture Sorts and Item Sorts. Expert Syst. J. Knowl. Eng. 22,
3 (2005), 94ś107. https://doi.org/10.1111/j.1468-0394.2005.00300.x

[53] Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the Rationale of
Code Commits: The Software Developer’s Perspective. In Proceedings of the ACM

402

http://plnkr.co/
https://spacy.io/
https://doi.org/10.1109/MSR.2013.6624004
https://doi.org/10.1109/ICSE.2019.00058
https://doi.org/10.1145/3338906.3338939
https://doi.org/10.1145/3338906.3338939
https://doi.org/10.1145/3196321.3196333
https://doi.org/10.1109/ICSME.2014.88
https://doi.org/10.1109/ICSME.2014.88
https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1109/MSR.2013.6624013
https://doi.org/10.1016/j.infsof.2017.10.009
https://doi.org/10.1145/3379597.3387493
https://nodejs.org/en/
https://www.typescriptlang.org/
https://doi.org/10.1007/3-540-45368-7_9
https://doi.org/10.18653/v1/n19-1423
https://www.docker.com/
https://doi.org/10.1111/j.1468-0394.2005.00299.x
https://doi.org/10.1111/j.1468-0394.2005.00299.x
https://ethereum.org/en/
http://appium.io/
https://deeplearning4j.org/
https://developer.gitter.im/docs/rest-api
https://doi.org/10.1524/itit.2013.1012
https://doi.org/10.1524/itit.2013.1012
https://angular.io/
https://gitter.im/
https://slack.com/
https://doi.org/10.1007/s10586-018-2031-4
https://doi.org/10.1109/MSR.2013.6624039
https://doi.org/10.1109/MSR.2013.6624039
https://doi.org/10.1007/s10664-020-09819-6
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1145/3183440.3194951
https://doi.org/10.18653/v1/p19-1374
https://doi.org/10.1145/2818052.2869117
https://doi.org/10.1145/2818052.2869117
https://doi.org/10.24963/ijcai.2020/535
https://gitter.im/
https://doi.org/10.1109/ICSME46990.2020.00013
https://doi.org/10.1111/j.1083-6101.1998.tb00079.x
https://doi.org/10.1111/j.1083-6101.1998.tb00079.x
https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1109/RE.2005.46
https://doi.org/10.1109/RE.2005.46
https://doi.org/10.1145/3379597.3387494
https://doi.org/10.1145/3379597.3387494
https://doi.org/10.1145/3295750.3298924
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1111/j.1468-0394.2005.00300.x


A First Look at Developers’ Live Chat on Gitter ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019. ACM, 397ś408.
https://doi.org/10.1145/3338906.3338979

[54] Jorge M. Santos and Mark J. Embrechts. 2009. On the Use of the Adjusted Rand
Index as a Metric for Evaluating Supervised Classification. In Artificial Neural
Networks - ICANN 2009, 19th International Conference, Limassol (Lecture Notes in
Computer Science, Vol. 5769). Springer, 175ś184. https://doi.org/10.1007/978-3-
642-04277-5_18

[55] Roland Robert Schreiber and Matthäus Paul Zylka. 2020. Social Network Analysis
in Software Development Projects: A Systematic Literature Review. Int. J. Softw.
Eng. Knowl. Eng. 30, 3 (2020), 321ś362. https://doi.org/10.1142/s021819402050014x

[56] Dou Shen, Qiang Yang, Jian-Tao Sun, and Zheng Chen. 2006. Thread Detection
in Dynamic Text Message Streams. In SIGIR 2006: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 35ś42. https://doi.org/10.1145/1148170.1148180

[57] Lin Shi, Mingzhe Xing, Mingyang Li, Yawen Wang, Shoubin Li, and Qing Wang.
2020. Detection of Hidden Feature Requests from Massive Chat Messages via
Deep Siamese Network. In ICSE ’20: 42nd International Conference on Software
Engineering. ACM, 641ś653. https://doi.org/10.1145/3377811.3380356

[58] Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. 2009. On the Use of
Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+ Project.
In Proceedings of the 6th International Working Conference on Mining Software
Repositories, MSR 2009 (Co-located with ICSE). 107ś110. https://doi.org/10.1109/
MSR.2009.5069488

[59] Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. 2009. Studying the Use
of Developer IRC Meetings in Open Source Projects. In 25th IEEE International
Conference on Software Maintenance (ICSM 2009). 147ś156. https://doi.org/10.
1109/ICSM.2009.5306333

[60] Andrea Di Sorbo, Sebastiano Panichella, Corrado Aaron Visaggio, Massim-
iliano Di Penta, Gerardo Canfora, and Harald C. Gall. 2015. Development
Emails Content Analyzer: Intention Mining in Developer Discussions (T). In

30th IEEE/ACM International Conference on Automated Software Engineering, ASE
2015. 12ś23. https://doi.org/10.1109/ASE.2015.12

[61] Alexander Strehl and Joydeep Ghosh. 2002. Cluster Ensembles Ð A Knowledge
Reuse Framework for Combining Multiple Partitions. J. Mach. Learn. Res. 3 (2002),
583ś617.

[62] Neny Sulistianingsih and Edi Winarko. [n.d.]. Performance Analysis of Molecular
Complex Detection in Social Network Datasets. International Journal of Computer
Applications 975 ([n. d.]), 8887.

[63] Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A first look at good first issues
on GitHub. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann (Eds.). ACM, 398ś409. https://doi.org/10.1145/3368089.3409746

[64] Christoph Treude, Ohad Barzilay, and Margaret-Anne D. Storey. 2011. How Do
Programmers Ask and Answer Questions on the Web?. In Proceedings of the
33rd International Conference on Software Engineering, ICSE 2011. ACM, 804ś807.
https://doi.org/10.1145/1985793.1985907

[65] Stanley Wasserman and Katherine Faust. 1994. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press. https://doi.org/10.1017/
CBO9780511815478

[66] Duncan J Watts and Steven H Strogatz. 1998. Collective Dynamics of ‘Small-
world’ Networks. nature 393, 6684 (1998), 440ś442.

[67] Liguo Yu, Srini Ramaswamy, Alok Mishra, and Deepti Mishra. 2011. Commu-
nications in Global Software Development: An Empirical Study Using GTK+
OSS Repository. In Proceedings of the 2011th Confederated International Con-
ference on the Move to Meaningful Interest Systems, OTM’11. 218ś227. https:
//doi.org/10.1007/978-3-642-25126-9_32

[68] Yuxia Zhang, Minghui Zhou, Klaas-Jan Stol, Jianyu Wu, and Zhi Jin. 2020. How
Do Companies Collaborate in Open Source Ecosystems?: An Empirical Study of
OpenStack. In ICSE ’20: 42nd International Conference on Software Engineering.
ACM, 1196ś1208. https://doi.org/10.1145/3377811.3380376

403

https://doi.org/10.1145/3338906.3338979
https://doi.org/10.1007/978-3-642-04277-5_18
https://doi.org/10.1007/978-3-642-04277-5_18
https://doi.org/10.1142/s021819402050014x
https://doi.org/10.1145/1148170.1148180
https://doi.org/10.1145/3377811.3380356
https://doi.org/10.1109/MSR.2009.5069488
https://doi.org/10.1109/MSR.2009.5069488
https://doi.org/10.1109/ICSM.2009.5306333
https://doi.org/10.1109/ICSM.2009.5306333
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1145/3368089.3409746
https://doi.org/10.1145/1985793.1985907
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1007/978-3-642-25126-9_32
https://doi.org/10.1007/978-3-642-25126-9_32
https://doi.org/10.1145/3377811.3380376

	Abstract
	1 Introduction
	2 Background
	2.1 The Gitter Platform
	2.2 Challenges in Chat Analysis
	2.3 Dialog Disentanglement (DD)

	3 Methodology and Study Design
	3.1 Methodology Overview
	3.2 Data Preparation
	3.3 Empirical Analysis Design

	4 Results and Analysis
	4.1 RQ1: Communication Profile
	4.2 RQ2: Community Structure
	4.3 RQ3: Discussion Topic
	4.4 RQ4: Interaction Pattern

	5 Discussion
	5.1 Individual Developers
	5.2 OSS Communities
	5.3 Platform Vendors
	5.4 Researchers
	5.5 Threats To Validity

	6 Related Work
	7 Conclusion and Future Work
	References

